
Reconvergent Path-aware Simulation of Bit-stream Processing

Sercan Aygun
University of Louisiana at

Lafayette
Lafayette, LA, USA

sercan.aygun@louisiana.edu

M. Hassan Najafi
University of Louisiana at

Lafayette
Lafayette, LA, USA
najafi@louisiana.edu

Mohsen Imani
University of California

Irvine
Irvine, CA, USA
m.imani@uci.edu

Ece Olcay Gunes
Istanbul Technical

University
Istanbul, Turkey

gunesec@itu.edu.tr

ABSTRACT

Few studies have explored the complex circuit simulation of stochas-

tic and unary computing systems, which are referred to under the

umbrella term of bit-stream processing. The computer simulation of

multi-level cascaded circuits with reconvergent paths has not been

largely examined in the context of bit-stream processing systems.

This study addresses this gap and proposes a contingency table-

based reconvergent path-aware simulation method for fast and

efficient simulation of multi-level circuits. The proposed method

exhibits significantly better runtime and accuracy.

ACM Reference Format:

Sercan Aygun, M. Hassan Najafi, Mohsen Imani, and Ece Olcay Gunes.

2023. Reconvergent Path-aware Simulation of Bit-stream Processing . In

Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI ’23), June

5–7, 2023, Knoxville, TN, USA. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3583781.3590323

1 INTRODUCTION

In recent years, bit-stream processing systems have emerged as an

attractive alternative paradigm for achieving efficient and robust

outcomes in a variety of applications [1]. The primitive data rep-

resentation is a bit-stream, which accumulates values of logic-1s

across a bit-stream of size # [5]. Bit-stream computing approach

offers a new perspective on lightweight hardware design for ma-

chine learning but requires a testable environment for design space

exploration [3]. To this end, prior works offered some frameworks

for hardware and software simulation of bit-stream processing sys-

tems. A new tool, CT, short for “Contingency Table," imitates actual

bit-streams but without generating long bit-level sequences. In-

stead, it works with scalar numbers [4]. In this work, we follow the

design principles of CT for runtime- and memory-efficient simula-

tion of bit-stream processing systems. However, we 1 efficiently

and rapidly simulate multi-level circuits for bit-stream processing,

and 2 consider reconvergent paths.

2 GLANCE AT SCALAR PROCESSING

Given the randomized and iterative nature of bit-stream size, # ,

developing a fast and efficient software method for bit-stream pro-

cessing is challenging in terms of runtime and memory. Figure 1

depicts the processing of two bit-stream operands, where each bit

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590323

Operand1

Operand2
...

...

+ +

+

+ +

+

11 10 01 00

a

b

c

d

Output

a

a+b+c

b+c

b+c+d

d

a+d

Scalar Logic

Logic

Operand1

Operand2

Operand1

Operand2

Maximum Correlation

Minimum Correlation

amax dmax1
0

Operand1

Operand2

Zero Correlation azero

amin dmin

0<0G =<8= ($?1,$?2) 1 = $?1 − 0

0<8= =<0G (0,$?1 +$?2 − #) 2 = $?2 − 0

0I4A> = ⌊ ($?1 ×$?2)/# ⌉ 3 = # − (0 + 1 + 2)

$? : scalar operand

Figure 1: Scalar processing and formulas.

overlaps at every position. Each bit undergoes a logic operation,

and following # cycles, the output bit-stream is produced. Each

bit in the output, , can then be accumulated. The results derived

from different logic operations can be expressed via the cumulative

counts of overlapping elements: , , , and . The total

numbers of symbol overlaps are denoted as 0, 1, 2 , and 3 . Consider

the output bit-stream of the AND operation, which is based on the

total occurrence of between the operands. Hence, the total

number of 1s at the output accumulation, denoted by
∑

, is equal

to 0. By establishing relationship between symbols, input scalars,

and # , the bit-stream generation and logic processing can be elimi-

nated, as scalar logic exists, as shown in Figure 1. The crucial argu-

ment for establishing a direct relation is founded upon correlation.

The design process can be effectively initiated through: maximum,

minimum, and zero correlation. Figure 1 elucidates the cases with

maximally, minimally correlated, or uncorrelated operands while

taking into account the overlappings of identical symbols:

and . The implementation of maximum correlation guarantees

that 0 reaches its maximum value, whereas minimum correlation

ensures its minimum. Therefore, symbol 0 assumes critical signifi-

cance. The symbol 0 and the zero correlation case are intrinsically

linked through the utilization of cross-correlation optimization.

The formulas are presented in Figure 1.

3 EXPLOITING RECONVERGENT PATHS

In-stream correlation manipulation is a growing trend in bit-stream

processing [2]. Stream estimation has the potential to revolutionize

bit-stream simulation tools, especially by bringing the reconver-

gence concept to digital bit-stream processing. For emulation of

multi-level circuits, let us consider a 2-input (X1 and X2) AND gate.

The expected value at the gate’s output, denoted by %. , is calcu-

lated as E[^1 × ^2] = E[^1] × E[^2] = %-1 × %-2 = %. , where

the inputs are independent random variables. The difference be-

tween the exact value (%.) and the obtained value (%̂.) reflects

the random fluctuations error [1]. The squared error provides a

measure of the random fluctuation, which can be quantified by

225

GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Sercan Aygun, M. Hassan Najafi, Mohsen Imani, & Ece Olcay Gunes

𝑎𝑧𝑒𝑟𝑜 =

G1 = 𝑏 + 𝑐 + 𝑑
𝑏 = 𝐴 − 𝑎𝑐 = 𝐵 − 𝑎

ඌ ඈ𝐴 × 𝐵𝑁
𝑑 =𝑁 − (𝑎 + 𝑏 + 𝑐)
𝑎 = 𝑎𝑧𝑒𝑟𝑜+ 𝑁𝜀1

𝑎𝑧𝑒𝑟𝑜 =
G2 = 𝑏 + 𝑐 + 𝑑
𝑏 = 𝐴 − 𝑎𝑐 = 𝐺1 − 𝑎ඌ ඈ𝐴 × 𝐺1𝑁 𝑑 = 𝑁 − (𝑎 + 𝑏 + 𝑐)𝑎 = 𝑎𝑧𝑒𝑟𝑜+ 𝑁𝜀2 𝑎𝑧𝑒𝑟𝑜 =𝑏 = 𝐺2 − 𝑎𝑐 = 𝐺3 − 𝑎

ඌ ඈ𝐺2 × 𝐺3𝑁
𝑑 = 𝑁 − (𝑎 + 𝑏 + 𝑐)
𝑎 = 𝑎𝑧𝑒𝑟𝑜+ 𝑁𝜀4

𝑎𝑧𝑒𝑟𝑜 =
G3 = 𝑏 + 𝑐 + 𝑑
𝑏 = 𝐺1 − 𝑎𝑐 = 𝐵 − 𝑎ඌ ඈ𝐺1 × 𝐵𝑁 𝑑 = 𝑁 − (𝑎 + 𝑏 + 𝑐)𝑎 = 𝑎𝑧𝑒𝑟𝑜+ 𝑁𝜀3

G4 = 𝑏 + 𝑐 + 𝑑

A B G1

0 0 1

0 1 1

1 0 1

1 1 0

Y1 Y2𝑎𝑧𝑒𝑟𝑜𝑎𝑎𝑐𝑡=𝑎𝑧𝑒𝑟𝑜+𝑁 × 𝜀
𝑎𝑎𝑐𝑡+𝑏+𝑐𝑐𝑏

𝜀 = 𝑎𝑧𝑒𝑟𝑜/𝑁 × 1 − 𝑎𝑧𝑒𝑟𝑜/𝑁𝑁(𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑐𝑎𝑠𝑒)

Y3

I.) Generate reference AND gate`s 𝑎𝑧𝑒𝑟𝑜
II.) Estimate actual value via 𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 + 𝜀
III.) Find 𝒃, 𝒄, and 𝒅 via 𝑎𝑎𝑐𝑡

(a)

A B G1

0 0 1

0 1 1

1 0 1

1 1 0

A B G2 G3

0 0 1 1

0 1 1 0

1 0 0 1

1 1 1 1

G1

A

B

G2

G3

G4

A

G1

G1

G2

G3

B

(b)

S
trea

m

E
stim

a
tio

n

S
tep

s

(c)

G4

Figure 2: Stream estimation (a), cascaded circuit simulation

(b), and truth tables for reconvergent path analysis (c).

f2 = %. × (1 − %.)/# for Bernoulli random variables. As f is a

function of %. and # , the type of circuit is unimportant, and the

AND gate can serve as a reference gate due to its importance in

scalar processing. Figure 2(a) illustrates the steps of multi-level

circuit simulation using scalar processing and the proposed stream

estimation steps. Zero correlation is used to obtain an expected

value for the AND gate. This is essential since n necessitates it

for standard deviation calculation in the binomial case. That is,

n = f =

√

%. (1 − %.)/# , where %. = %.1 × %.2 =
0I4A>

#
. Nev-

ertheless, the expected value deviates from the actual value. To

tackle this, we use the deviation calculation related to the random

source through n , and the expected value is estimated (via 0I4A>),

giving rise to 002C . Figure 2(b) illustrates the stream estimation and

also is an exemplar circuit (four-NANDs XOR) for reconvergence.

The circuit paths that exhibit reconvergence are highlighted using

different colors. Truth tables in Figure 2(c) are used to analyze the

outputs of gates. We observe that in the yellow-colored loop, � and

�1 never have a ‘00’ state, resulting in signal correlation for �2.

This holds true for gates �3 and �4. The outputs of the gates do

not possess a ‘00’ state in the colored loops, and there is a corre-

lation; it is called reconvergence. We must set the corresponding

3 symbol (00) to a minimum, thus setting 0 to a minimum as well:

0<8= = <0G (0,$?1 +$?2 − #). As a result, the formulas for �2,

�3, and�4 in Figure 2(b) are initialized using 0<8= instead of 0I4A> .

4 SIMULATION RESULTS

Next, we simulate (i) Four-NANDs XOR and (ii) 2-bit ripple carry

adder known in the literature for reconvergent paths [6]. The latter

topology is more complex with four cascading levels and ten gates

to analyze; Sum and Carry outputs (S0, S1, C1, C2) are checked.

Each topology is evaluated with two simulation approaches: Sim1

for actual bit-streams and Sim2 for scalar processing. We utilize

binomial random sources. Over 10, 000 random iterations, each Sim

accepts random inputs either as bit-streams or directly as scalars.

The checkpoints in each topology (G1, G2, G3, G4 in (i) & S0,

S1, C1, C2 in (ii)) are compared using mean absolute error (MAE)

Carry1 – C1

Sum1 – S1 Carry out – C2

Sum0 – S0

G1 G2

G3 G4

N
A
N
D
s

f
o
r

X
O
R

2
-
b
i
t

R
i
p
p
l
e

C
a
r
r
y

A
d
d
e
rM
A
E

Sim 2 vs. Sim 3

Carry out – C2

2-bit Ripple Carry AdderNANDs for XOR

R
U
N
T
I
M
E

Sim 1 vs.

Sim 3Carry out – C2G4

sec

Figure 3: MAE and Runtime performance.

between Sim1 and Sim2; hence, the performance of simulator is

measured with respect to real bit-streams. Sim2 does not use the re-

convergence concept and follows the always-set-0I4A> approach in

Figure 2(b). Nevertheless, one more simulation, Sim3, considers the

reconvergent paths and initiates scalar processing symbols consid-

ering signal correlations. Figure 3 compares the MAE performance

between Sim2 and Sim3. The reconvergence-aware simulation gives

better results, especially for the longer bit-stream size. Figure 3 also

compares the runtime performance of Sim1 and Sim3.

5 CONCLUSIONS

This study introduces two novel concepts for the simulation of

bit-stream processing systems: stream estimation at mid-levels of

cascaded logic circuits and reconvergence awareness for signal cor-

relations. The proposed simulation model, which utilizes efficient

estimation, results in a significantly faster runtime.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation

(NSF) grants #2127780 and #2019511, Semiconductor Research Cor-

poration (SRC), Office of Naval Research, grant #N00014-21-1-2225

and #N00014-22-1-2067, the Air Force Office of Scientific Research

under award #FA9550-22-1-0253, the Louisiana Board of Regents

Support Fund #LEQSF(2020-23)-RD-A-26, and generous gifts from

Cisco, Xilinx, and Nvidia.

REFERENCES
[1] Armin Alaghi et al. 2018. The promise and challenge of stochastic computing.

IEEE TCAD 37, 8 (2018), 1515–1531.
[2] Sina Asadi et al. 2021. CORLD: In-stream correlation manipulation for low-

discrepancy stochastic computing. In 2021 ICCAD. 1–9.
[3] Sercan Aygun. 2022. Stochastic bitstream-based vision and learning machines. Ph. D.

Dissertation. Istanbul Technical University, Istanbul, Turkey.
[4] Sercan Aygun and Ece Olcay Gunes. 2022. Utilization of contingency tables in

stochastic computing. IEEE Transactions on Circuits and Systems II 69, 6 (2022).
[5] S. Rasoul Faraji et al. 2019. Energy-efficient convolutional neural networks with

deterministic bit-stream processing. In 2019 DATE. 1757–1762.
[6] Torras Flaquer et al. 2010. Handling reconvergent paths using conditional proba-

bilities in combinatorial logic netlist reliability estimation. In 2010 ICECS.

226

	Abstract
	1 Introduction
	2 Glance at Scalar Processing
	3 Exploiting Reconvergent Paths
	4 Simulation Results
	5 Conclusions
	References

